Showing posts with label Binary Tree. Show all posts
Showing posts with label Binary Tree. Show all posts

Wednesday, 12 October 2016

Left View of a Binary Tree

Problem : Given a Binary Tree, print the left view .

Example :

Consider the following Binary Tree :


Left View of above tree : 1, 2, 4



Explanation : The left view of a given tree is nothing but the nodes that one would see when viewing the tree from the left side . For the given binary tree, the Left View shall be 1, 2, 4


Solution

There are multiple approach to solve above problem. But the basic idea is level order traversal . 
We will try to identify first node at each level and print it before moving to the next level. Trick is to identify the first element of each level. For this , we add an empty node at the end of each level. 

Implementation :

Following is the core Java implementation of approach :

 
public static void printLeftView(BinaryTreeNode root) {


    if (root == null) return;

    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>();

    BinaryTreeNode flag = new BinaryTreeNode();        q.add(root);
    q.add(flag);        boolean levelover = false;
    System.out.println(root.data);
    BinaryTreeNode temp;

    //LEVEL ORDER TRAVERSAL
    while (!q.isEmpty()) {


        temp = q.remove();

        if (!temp.equals(flag) && levelover == true) {


            System.out.println(temp.data);
            levelover = false;
        }


        if (temp.equals(flag)) {


            levelover = true;
            if (!q.isEmpty()) q.add(flag);
        }


        if (temp.left != null) q.add(temp.left);
        if (temp.right != null) q.add(temp.right);

    }
}





Tuesday, 13 September 2016

Height of a Binary tree : Recursive and Iterative Approach

Problem : Given a Binary Tree , find the height of the tree. 

 Example:

Height of above Tree = 3


Explanation:

 Height of a binary tree is  the number of nodes along the longest path from the root node down to the farthest leaf node. The Height of the empty tree is 0, the Height of the tree in the above example is 3

Solution

There can be two approach to solve this problem : 
1. Recursive : using recursive calls to find heights of left and right subtress 
2. Iterative : using level order traversal 

Let us have a look at both the approaches one by one : 


A. Recursive Solution :  

   1. if the root ==null , return 0
Else : perform 2 -->4
   2. find height of left subtree , say LH 
   3. find height of right subtree , say RH
   4. if LH >RH, return LH +1 , else return RH+1

B. Iterative Solution :
 Do a level order traversal, increment height at each level. Return height at the end.


Implementation

Following are the java implementations for both solutions 

A. RECURSIVE :

 int height(Node root){
        
         if(root==null) return 0;
       
       else{
            int lh= height(root.left);
            int rh= height(root.right);
       
       if(lh>rh) return lh+1;
       else return rh+1;
       }
          
    }



B. ITERATIVE :


 int height(Node root)
    {
         if(root==null) return 0;
       Node node=root;
       int height=0;
       Queue<Node> q= new LinkedList<Node>();
       q.add(node);
       
       while(true){
            // nodeCount (queue size) indicates number of nodes
            // at current lelvel.
            int nodeCount = q.size();
            if (nodeCount == 0) {
                return height;
            }

            height++;

            // Dequeue all nodes of current level and Enqueue all
            // nodes of next level
            while (nodeCount > 0) {
                Node newnode = q.peek();
                q.remove();
                if (newnode.left != null) {
                    q.add(newnode.left);
                }
                if (newnode.right != null) {
                    q.add(newnode.right);
                }
                nodeCount--;
            }
        }
           
           
           
       }
    
________________________________________________________________________________



REFERENCES
http://cslibrary.stanford.edu/110/BinaryTrees.html
https://www.hackerrank.com/challenges/tree-height-of-a-binary-tree



Saturday, 20 August 2016

Least Common Ancestor : Binary Tree

Lowest Common Ancestor:

In graph theory and computer science, the lowest common ancestor (LCA) of two nodes v and w in a tree or directed acyclic graph (DAG) T is the lowest (i.e. deepest) node that has both v and w as descendants, where we define each node to be a descendant of itself (so if v has a direct connection from ww is the lowest common ancestor).
The LCA of v and w in T is the shared ancestor of v and w that is located farthest from the root. Computation of lowest common ancestors may be useful, for instance, as part of a procedure for determining the distance between pairs of nodes in a tree: the distance from v to w can be computed as the distance from the root to v, plus the distance from the root to w, minus twice the distance from the root to their lowest common ancestor (Djidjev, Pantziou & Zaroliagis 1991). In ontologies, the lowest common ancestor is also known as the least common subsumer.
In a tree data structure where each node points to its parent, the lowest common ancestor can be easily determined by finding the first intersection of the paths from vand w to the root. In general, the computational time required for this algorithm is O(h) where h is the height of the tree (length of longest path from a leaf to the root). However, there exist several algorithms for processing trees so that lowest common ancestors may be found more quickly. Tarjan's off-line lowest common ancestors algorithm, for example, preprocesses a tree in linear time to provide constant-time LCA queries. In general DAGs, similar algorithms exist, but with super-linear complexity.




Problem :

Given a binary tree and two values d1& d2, find the least common ancestor of the two values in the input tree.


Example:
  Consider the following image :









Solution :
We follow a recursive approach where in we recurse through the right and left children of the parameter node .

Return value is root itself if output of each recursion is null , else the we return the value is which in non-null among the two recursive output.

Base and Edge cases are as shown in the code.

Implementation:

Binary Tree Node :
public class BinaryTreeNode {

    private int data;    private BinaryTreeNode left;    private BinaryTreeNode right;
    public int getData() {
        return data;    }

    public void setData(int data) {
        this.data = data;    }

    public BinaryTreeNode getLeft() {
        return left;    }

    public void setLeft(BinaryTreeNode left) {
        this.left = left;    }

    public BinaryTreeNode getRight() {
        return right;    }

    public void setRight(BinaryTreeNode right) {
        this.right = right;    }
}


LCA class : 
public class LCA {


    public BinaryTreeNode getLCA(BinaryTreeNode root, int data1, int data2){

    //Base case
        if (root == null){
            return  null;        }

    //edge case
        if (root.getData()==data1 || root.getData() == data2) {
            return root;        }


    BinaryTreeNode leftLCA = getLCA(root.getLeft(), data1, data2);            BinaryTreeNode rightLCA = getLCA(root.getRight(), data1, data2);

    if (leftLCA != null && rightLCA != null){
        return root;    }

    if (leftLCA == null) {
        return rightLCA;    }

    else {
        return leftLCA;    }


    }
}